

INNOVATIVE HEALTHCARE STRATEGIES

Workshop 2: The reuse of electronic health records for Learning Health Systems

Prof. Dipak Kalra

President of The European Institute for Innovation through Health Data

Welcome by the workshop chair

The importance of good EHRs for Learning Health Systems

Patients Health Care Hospital Physician Clinical Research Service Providers

THE IMPORTANCE OF GOOD EHRS FOR LEARNING HEALTH SYSTEMS

Prof Dipak Kalra President of i~HD

+

Thomas Allvin EFPIA Executive Director for Strategy and Healthcare Systems

EAHM Congress, Ghent 13th September 2019

The European Institute For Innovation Thr~ugh Health Data

HEALTH

Ith Care

Nurse Dentist First Aid Surgeon Emergency

o (8)

The Learning Health System: "Virtuous Cycles" of Study and Change

Slide courtesy of Prof Charles P. Friedman, Department of Learning Health Sciences, University of Michigan

7

The Learning Health System: Going global

- Initiatives at Varying Scales
 - Single Organisations
 - Networks
 - Regional
 - National

i~HD

International

Slide courtesy of Prof Charles P. Friedman, Department of Learning Health Sciences, University of Michigan

8

Population ageing creates sustainability challenge for EU health systems

change (2013-2060) (% of GDP) 10 9 8 7 6 5 4 7.7 7.8 8.1 7 8 7.1 7.2 ^{7.6} 6.9 7.5 6.6 6.9 3 0^{-1} 6.1 5.9 5.7 5.7 **6** 5.7 5.7 4.6 2 1 0 P E B C М EU15 Ĥ N AT N F F F ξă Change between 2013 and 2060 2013

Projected increase in public expenditure in healthcare due to demographic

NOTE: FOR THE EU, NMS (NEW MEMBER STATES) AND THE EA (EURO AREA) THE AVERAGE ARE WEIGHTED ACCORDING TO GDP. EUROPEAN COMMISSION (2015). THE AGEING REPORT.

Slide courtesy of Thomas Allvin, EFPIA

Variation of heart failure outcomes across European countries

> 3x variation in death
during first HF admission

Death during first admission, %

12 week mortality rate, %

>4x variation in 12 week readmission rate for HF

12 week readmission rate, %

Slide courtesy of Thomas Allvin, EFPIA

Multi-morbidity: the scale of the challenge

i~HD

Chris Salisbury, Leigh Johnson, Sarah Purdy, Jose M Valderas and Alan A Montgomery Br J Gen Pract 2011; 61 (582): e12-e21

11

Estimated 20 – 40 % waste in health systems

- According to a WHO report from 2010, on average 27% of healthcare expenditure is wasted
- There are several sources of waste, but half of the total waste is estimated to be due to practice variation and use of low-value interventions
- A recent OECD report concludes that around one fifth of healthcare expenditure could be channeled towards better use

Slide courtesy of Thomas Allvin, EFPIA

Value-Based Health Care (VBHC) is helping shift focus from volume of services to value created for patients

The NEW ENGLAND JOURNAL of MEDICINE	 The fundamental goal and purpose of health care is to improve value for patients
What Is Value in Health Care?	Health outcomes Value = that matter to patients
	Costs of delivering these outcomes
<text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>	 Value is the only goal that can unite the interests of all system participants Value is created in caring for a patient's medical condition over the full cycle of care The most powerful single lever for reducing cost and improving value is improving outcomes
ource: "What is Value in Health Care" Aichael Porter, New England Journal of Medicine, 2010)	Source: ICHOM 2019

Slide courtesy of Thomas Allvin, EFPIA

By learning from its data...

- ...Kaiser Permanente is able to track outcomes and develop data driven algorithms embedded within its EHR systems, to achieve:
 - HIV death rate half of national average
 - Decrease in coronary heart disease death rate by a third
 - Decrease in pressure ulcers by two thirds
 - Death due to sepsis reduced by > 50%

The LHS ambitions of many European hospitals

- fore integrated and person

- dema is a critical success factor uneir curved reusable data is a core in uneir curved reusable data is active cess factor in active oss hospital networks, and across Europe, to share good

i~HD targets a convergence of opportunity from health data

- Conduct faster, more efficient, clinical research
- Demonstrate the benefit from innovative products
- Create better Real World Evidence
- Generate new evidence for precision medicine and value based models

Healthcare

- Improve quality, safety and connectedness of care
- Empower patients in self-care and health maintenance
- Use outcomes to improve services
- Have better evidence for public health strategies

Need to collaborate to improve access to combined health data from multiple sources

i~HD

i~HD is a neutral body, bringing stakeholders together

Issues that hospitals have raised with us

- Limited reuse of their EHR data at present
- Poor EHR data quality, difficulties in improving it
- Concerns about data protection, especially with the GDPR
- Often working to locally-defined outcomes, so impossible to compare or collaborate with other hospitals
- Limited capacity to measure patient reported outcomes

CELLENCE A community of hospitals sharing their learning and innovations with EHR data for clinical research & learning health systems.

Ν

Ε

Т

W

0

R

Κ

0

F

X

Good practice demonstrating value

Communities co-operating and working synergistically

i~HD

Ν

GDPR & health data challenges

HD

GDPR Tutorial

FOR HEALTH DATA DRIVEN INNOVATION

. ..

Which **legal basis** is best suited to different scenarios of reusing health data for research?

Who are the **data controllers**, **joint controllers** and **processors** in a federated big data & analytics ecosystem?

4

What safeguards would be adequate for **accountability** & **security**?

How can **rights** – especially to erasure & portability – be upheld in the health data innovation space?

How can we be meaningfully **transparent** with patients & the public about **health data reuse** for research?

i~HD Quality Seal for Research Platforms

- This Seal provides assurance to healthcare organisations, research centres and research sponsors, that ICT products and services used for research using EHRs do so in secure ways that protect data privacy, including GDPR compliance
- Service providers of clinical research platforms can apply for this Seal
- We hope in the future that hospitals and other organisations will insist on only connecting to platforms with this Seal

Assessment methods to improve data quality, promoting the importance of data quality, scaling this up across Europe

> to enable the best quality data for learning health systems & clinical research

Having great data to use & making great use of data

Do European healthcare providers have the right data for value-based healthcare?

EFPIA is working with i-HD to assess the data readiness in a number of European hospitals, using the ICHOM standard set for Heart Failure

Slide courtesy of Thomas Allvin, EFPIA

Key components of project

- Agree the ICHOM heart failure indicators that are most relevant for an outcomes-based approach.
- **Re-formulate the indicators as EHR variables**
- Compile a list of approximately ten hospitals and confirm willingness to participate via a collaboration agreement, with assurance about data protection and GDPR compliance
- **Conduct data item assessment and data quality assessment**
- > Draw overall conclusions including common areas for improvement

Prof. Pascal Coorevits

Certification and Labelling Adviser, EuroRec Representative

Assessing the data quality of hospital EHRs

Quality of health data is vital

- Patients and clinicians want health data to be safe, rapid and evidence based
- Healthcare managers also want to use resources efficiently and need insights for strategic planning
- Public health agencies need reliable data to guide healthcare and prevention programmes
- Healthcare funders need good quality data to reward high-quality and value-based care
- Pharma wants to re-use EHRs to accelerate clinical research
- Regulators and HTA agencies want to be able to trust Real World Evidence in decision making
- Everyone wants to achieve the best patient outcomes and they all know that good data is a critical success factor

Electronic Health Records

Electronic Health Records offer enormous potential to improve the safety, quality and efficiency of healthcare

Empirical evidence for the beneficial impacts of most eHealth technologies on the quality and safety of healthcare are often lacking, or at best, only modest

Some of the reported issues: lacking of key EHR features, not using EHRs to their full potential, poor interoperability, low usability, low EHR (data) quality, etc...

i~HD

Quality of EHRs and EHR data

- To use EHRs efficiently for daily routine care, for clinical research, for big data analytics, ... a number of functionalities are needed (e.g. security, confidentiality, trustworthiness, ...)
- Mechanisms are required to ensure e.g. data correctness, completeness, consistency, …

Quality assurance is essential

Quality labelling & certification are needed

i~HD Data Quality Taskforce

i~HD Data Quality Taskforce aims

Develop data quality assessment methods, tools and improvement strategies to maximise quality of health data

Promote the importance of data quality

Guidance in assessing and improving data quality

Scale up a multi-stakeholder understanding and commitment to increase data quality
Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research

Nicole Gray Weiskopf, Chunhua Weng

A Harmonized Data Quality Assessment Terminology and Framework for the Secondary Use of Electronic Health Record Data

Michael G. Kahn

Secondary Use of EHR: Data Quality Issues and Informatics Opportunities Taxiarchis Botsis^{a,b}, Gunnar Hartvigsen^{a,c}, Fei Chen^b, Chunhua Weng^b

> A practical framework for data management processes and their evaluation in population-based medical

M. SARIYAR¹, A. BORG¹, O. HEIDINGER² & K. POMMERENING¹

Work on data quality dimensions and assessment methods

A Data Quality Assessment Guideline for **Electronic Health Record Data Reuse**

uzanne Bakken, RN, PhD:^{##} George Hripcsak, MD, MS:[#] Chunhua Weng, PhD

RECEIVED 30 August 2015

Work on data quality dimensions and assessment methods

Several data quality indicators used
 Several definitions for the same concept

No universal approach

→ mapping exercise→9 quality dimensions

i~HD

Completeness – "data values are present"

Data Group	Data Item	Avg. usage	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6	Site 7	Site 9	Site 9
Demographics	Gender	100%	100,00%	100,00%	100,00%	100,00%	100,00%	100%	100%	100,0%	100,00%
Demographics	Case Status	96%	99,87%	100,00%	60,00%	100,00%	100,00%	100,00%	100%	100,0%	100,00%
Demographics	Date of Birth	89%	100,00%	100,00%	99,00%	NA	100,00%	100%	100%	100,0%	100,00%
Demographics	Admission date	84%	100,00%	100,00%	100,00%	NA	100,00%	99,53%	58%	100,0%	100,00%
Diagnosis	Diagnosis Text	81%	50,46%	84,02%	100,00%	100,00%	98,05%	100,00%	14%	100,0%	80,98%
Diagnosis	Diagnosis Code	81%	50,46%	84,02%	100,00%	100,00%	98,05%	100,00%	14%	100,0%	80,98%
Demographics	Discharge date	75%	100,00%	100,00%	100,00%	NA	100,00%	100,00%	58%	100,0%	14,18%
Diagnosis	Diagnosis Date	70%	50,46%	84,02%	100,00%	100,00%	100,00%	NA	13%	100,0%	80,98%
Medication	Dosage	25%	20,36%	0,00%	NA	NA	94,43%	95%	NA	NA	12,21%
Findings Laboratory Findings	Weight Platelets Blood	25% 48%	29,56% 52,78%	18,24% 33,14%	NA 63,73%	NA NA	89,17% 100,00%	27,20% 100%	36% 45%	7,5% NA	13,82% 33,88%
Laboratory Findings	SGPT (ALT) in serum	47%	33,61%	22,29%	100,00%	NA	100,00%	100%	47%	NA	21,86%
Laboratory Findings	Total Protein in serum	46%	52,37%	14,96%	86,53%	NA	100,00%	100%	47%	NA	16,34%
Laboratory Findings	Total Bilirubin in serum	46%	33,03%	16,99%	100,00%	NA	100,00%	100%	47%	NA	19,58%

ables such as W

Variables such as Weight are quite frequently not present

Doods et al. Trials 2014, 15:18 http://www.trialsjournal.com/content/15/1/18

Open Access

RESEARCH

A European inventory of common electronic health record data elements for clinical trial feasibility

Justin Doods¹, Florence Botteri², Martin Dugas¹, Fleur Fritz^{1*} and on behalf of EHR4CR WP7

i~HD

- Data quality issues found in a survival analysis of pancreatic cancer patients (Columbia University Medical Center, New York)
- Information inconsistency between different EHR data sources:
 - In a few cases, pancreatitis was diagnosed as being chronic in the pathology reports but it was reported as being only acute in the clinical notes
- Information inconsistency within the same data sources :
 - Some patients received simultaneously two different ICD-9-CM codes for their diagnoses of diabetes, both 250.01 and 250.02 for type-1 and type-2 respectively

Consistency – "Data satisfies constraints"

Summit on Translat Bioinforma. 2010; 2010: 1–5 Published online 2010 Mar 1. PMCID: PMC3041534

Secondary Use of EHR: Data Quality Issues and Informatics Opportunities

Taxiarchis Botsis, a,b Gunnar Hartvigsen, a,c Fei Chen, b and Chunhua Wengb

Osteoporos Int DOI 10.1007/s00198-016-3635-2

ORIGINAL ARTICLE

Clinical height measurements are unreliable: a call for improvement

A. L. Mikula¹ • S. J. Hetzel² • N. Binkley³ • P. A. Anderson⁴

"Fifty percent of staff reported they on occassion enter patient reported height into the EHR rather than performing a measurement"

Fig. 4 Bland-Altman plot for height measurements of subjects. Each data point represents a single patient. *X axis* represent mean patient height in centimeters. *Y axis* represents difference between the first and the last height measurement for the individual patients in centimeters. The *dotted lines* represent 95 % CI

i~ **I** Slide courtesy of Carlos Saez and Juan M. García Gómez, Universitat Politècnica de València

i~HD Hospital Network of Excellence Data Quality Workshop Towards better data quality in hospitals

Tuesday 23rd May 2017 - Wednesday 24th May 2017

i~HD

i~HD Session (Workshop 2) "The reuse of EHRs for Learning Health Systems"

When: Friday 13.09.2019 Timing: 4 PM – 5:30 PM Location: Meet & Greet Center in the Ghelamco Arena, Gent

Uncover the insights hidden in your EHRs

Save the date - registration opens soon

Assessing the Quality of Congestive Heart Failure outcomes data at the Hospital del Mar Barcelona

linical Research ervice Providers

Pascal Coorevits Geert Byttebier Dipak Kalra Geert Thienpont Carlos Sáez Juan M. García Gómez Marta Durá-Hernández Juan-Manuel Ramírez Anguita Miguel-Angel Mayer

The European Institute For Innovation Thr~ugh Health Data

i~HD

Pilot DQA

- Scoping of the DQA
- Congestive Heart Failure
- 146.602 patient visits with diagnosis of CHF
- ICHOM "Heart Failure" outcome variables basis for selection of variables for DQA → 22 variables (out of 72 ICHOM variables) were selected
- Data Quality Dimensions: Completeness, Correctness, Consistency, Uniqueness & Stability

Congestive Heart Failure (CHF) – ICD9 codes

428 Heart failure

Code, if applicable, heart failure due to hypertension first (402.0-402.9, with fifth-digit 1 or 404.0-404.9 with fifth-digit 1 or 3) *Excludes:*

rheumatic (398.91) that complicating: abortion (634-638 with .7, 639.8) ectopic or molar pregnancy (639.8) labor or delivery (668.1, 669.4)

428.0 Congestive heart failure, unspecified

Congestive heart disease Right heart failure (secondary to left heart failure) Excludes:

fluid overload NOS (276.6)

428.1 Left heart failure

Acute edema of lung with heart disease NOS or heart failure Acute pulmonary edema with heart disease NOS or heart failure Cardiac asthma Left ventricular failure

428.2 Systolic heart failure

Excludes:

combined systolic and diastolic heart failure (428.40-428.43)

428.3 Diastolic heart failure

Excludes:

i~

combined systolic and diastolic heart failure (428.40-428.43)

428.4 Combined systolic and diastolic heart failure

428.9 Heart failure, unspecified

Cardiac failure NOS Heart failure NOS Myocardial failure NOS Weak heart

402 Hypertensive heart disease 402.0 Malignant 402.00 Without heart failure 402.01 With heart failure

R package: automated pdf & html DQ reporting

i~ 🔚 🖸 Slide courtesy of Carlos Saez and Juan M. García Gómez, Universitat Politècnica de València

Types \rightarrow dictionary_types.c	CSV		Health Cale Doctor	By	
Ranges → dictionary_ranges.csv					
Multivariate rule	Comment	Error.su m	First Aid Surgeon Emergency	Con	
ARIDATE <= DISDATE	Arrival date <= Discharge date	0			
DATEofBIRTH <= DEATHDATE	Birth date <= Death date	0			
DISDATE <= DEATHDATE	Discharge date <= Death date	0			
DATEofBIRTH <= ARIDATE	Birth date <= Arrival date	0			
(WEIGHT/(HEIGHT/100)^2) <= 70	BMI under 70	180			
(WEIGHT/(HEIGHT/100)^2) >= 10	BMI over 10	15			

By Types: 99,99 % By Ranges: 100 % By Multivariate rules: 99,98 %

Consistency results by types, ranges and rules

i~ 🚺 Slide courtesy of Carlos Saez and Juan M. García Gómez, Universitat Politècnica de València

i~ 📕 🖸 Slide courtesy of Carlos Saez and Juan M. García Gómez, Universitat Politècnica de València

Report - Pilot Project -Hospital Parc de Salut Mar Barcelona, Catalonia, Spain

Table of content

Executive Summary	
Scope of the assessment	6
Method	
Summary of findings	r
Conclusion and recommendations	(
List of Abbreviations	5
Introduction	
Methodology	1(
Prenaratory stens	1(
Description of the EHR data repository to be assessed	1(
Population	13
ICHOM standard dataset	13
Construction of the requested dataset	13
Description of the format of the expected dataset	13
Description of the derived variables	11
Description of the Data Quality Dimensions	14
Toole	
Deculte	
Preliminary analysis of the received dataset	
Descriptive statistics	
Age at hegpitalization	
Age at hospitalisation	
Sex	
Congretius Heart Failure (CHF)	
Abole Tikellering	
Atrial Florination	
Prior MI	
Smoking Status	
Alcohol use	Ze
Number of Hospital admissions during the past year	
Number of Hospital appointments during the past year	
Hypertension	
Diabetes Melitus	30

2

i~ 🚺 Data Quality Service for Hospitals – Barcelona pilot – Final Report v1.0 Friday 31st January 2019

• It is essential to have **considerable knowledge of the EHR** (types of data available, how the data were collected or who collected it)

• The **assessment** of the data is the very first step to improve the quality of your data

• Once you know about the quality of your data, it is important to **monitor it regularly**

• Multidisciplinary approach is highly recommended

 Thinking of using EHR for different purposes such as research, EHR data models would need to be expanded and redesigned and data quality assessment can assist in doing these tasks

- It is of value that an **external assessment** of the data quality is performed by an independent organization
- High-quality data enhance the validity and reliability of study findings
- It is critical to ensure that **the metrics** are feasible, valid, and meaningful for a specific EHR and purpose and its quality improvement

Prof. dr. Miguel-Angel Mayer – Hospital del Mar - Barcelona

i~HD

Do you want to make better use of your electronic health record?

Do you want to improve the quality of your health data?

Data Quality Service for Hospitals

www.i-hd.eu

i~

Preparation and planning	Dataset generation	Assessment	Outcome		
 Webinar on data quality Needs and objectives Define the scope and domain(s) Scope the data sets Partnership and confidentiality agreements, GDPR Assign roles, timelines Contracts 	 Onsite visit Prioritise the DQ dimensions Select the EHR variables Prioritise and localise the i~HD DQ rule library Pre-assessment of the data set extract Fine tuning the data set set Final data set for assessment 	 Validation of the data set Tools based analysis of the variables for agreed dimension Graphical outputs + descriptive interpretation by i~HD medical and statistical experts Preliminary findings discussed with the hospital, to exchange insights on causative 	 Final written report Presentation to the team Discussion of recommendations Improvement strategy planning Workshops, online tutorials Issue successful hospitals with a Data Quality Seal 		

i~HD

Wat makes the i~HD DQS4H unique?

Pragmatic: minimally invasive to hospital operations

Evidence based: well researched, published, assessment methodology

Flexible: can be tailored to your data quality drivers

Focussed: we can help you choose the most suitable dimensions and EHR data variables

Staged: clear sequence of steps with regular interactions and feedback loops

Holistic: we consider quality in the context of your user workflows and your EHR system

Extendable: data sets can be added incrementally, to chart out a data quality improvement journey

i~HD

Frank Staelens OLV Hospital Aalst

i~HD@iHD_HealthData . Oct 9

i~HD member,@fstaelens, OLV Hospital Aalst: My vision is that medical data is an important vehicle to measure and improve quality of care in our hospital. i~HD supports us in analysing and visualising our health data and its quality. This helps in providing high quality care."

i~HD@iHD HealthData . Oct 15

research activities." #healthdata

@Joanxcomella, Director of @VHIR : Given

#iHD mission in health data quality, it was quite obvious for us to select i~HD as a preferred partner for our hospital data quality strategy. It will make us an even more attractive partner for European

Joan Comella Director of Vall d'Hebron Institut de Recerca

Miguel Angel Mayer Hospital del Mar

Dipak Kalra@DipakKalra . Oct 17

Dr Miguel Angel Mayer, from Hospital del MAr and i~HD Member, explains to the SCOPe audience how integrating clinical data, and assessing its quality, has enabled them to accelerate their bio-informatics research. #Datasaveslives

i~HD

Mr. Bart Vannieuwenhuyse Data Sciences Lead Benelux campus The value of Real World Evidence to Pharma

Value of Real World Data to pharma A data-driven pharmaceutical perspective

Pictured above: Ulcerative Colitis

Bart Vannieuwenhuyse September 2019 | Janssen Clinical Innovation

Framework for RWD

PHARMACEUTICAL COMPANIES OF Johnson Johnson

Framework for RWD

RWD defined

- RWE is generated using data typically collected in usual health care settings. RWE is most commonly generated using a range of non-interventional (observational) studies, including:
 - Primary data collections such as registries collecting prospective and/or retrospective data, or surveys collecting cross-sectional or retrospective information.
 - Analyses of secondary data that includes (electronic) medical records, insurance claims data, and government databases which provide data typically used for retrospective analyses.

RWD is the "by-product" of routine care

PHARMACEUTICAL COMPANIES of Johnnon₄Johnnon

Overview – data driven innovation opportunities

PHARMACEUTICAL COMPANIES OF JohnnonaJohnnon

Mobilizing data - challenges

Privacy, legal and ethical issues

Ownership – right to use

Data in silos

Semantic chaos – need for practical solutions on interoperability

Data quality – "horses for courses" Contractual barriers

Digital pipelines for sharing

Building **trust** among stakeholders

PHARMACEUTICAL COMPANIES OF JohnnonaJohnnon

Innovative Medicines Initiative

The IMI is a unique Public-Private Partnership (PPP) between the pharmaceutical industry represented by the European Federation of Pharmaceutical Industries and Associations (EFPIA) and the European Union represented by the European Commission.

PHARMACEUTICAL COMPANIES OF Johnnon Johnnon

Multiple great examples ---

- Federated approach
- Multi-stakeholder involvement/commitment
- Public-private collaborations
- Need for open-minded innovative approaches, look for long term benefits & potential

Stimulating the flow of data through federated networks

Benefits of federated networks

- Data remains under the control of the data owner
- Locally required legal and ethical approvals apply
- No patient level data leaves the owner's site, only aggregated counts, thereby ensuring patient privacy
- GDPR 'Privacy by Design'
- Analysis is "brought to the data" rather than creating central data repository
- Use of common data model allows for efficient search / analysis across multiple data sets
- Requires close collaboration with data
 owners which builds trust

Leveraging power of data – EMIF

European Medical Information Framework (EMIF)

EMIF-Alzheimer Disease research

Age-stratified prevalence of dementia in Europe from the literature and from electronic health records

Alexander et al, JAD 2014;48:355. Systematic literature analysis of 26 EU studies reveals continuously †ing prevalence of dementia from 60 years, reaching 44.7% at >95 years (left axis)

Stewart et al (submitted, AAIC 2016). Based on EHR in 6 population databases, prevalence of dementia \uparrow ed at a similar relative rate by age stratum, but was ~50% of that in Alexander et al's review (right axis).

Janssen / PHARMACEUTICAL COMPANIES

PHARMACEUTICAL COMPANIES OF Johnson Johnson

Using federated data in clinical research

Early protocol design (example InSite)

eChart Review / patient enrollment InSite (prospective)

Patricio Molero, MD, PhD Study PI

Clínica Universidad de Navarra, Spain

InSite recruitment in esketamine trial in major depressive disorders (54135419SUI3001)

"Fast, powerful tool for the identification of potential candidates"

"12 new patients which we otherwise would have missed"

pharmaceutical companies of Johnson Johnson

Influenza A infection: Linking primary care data and hospital EHR data

The aim of this pilot project was to define the time lapse between onset of flu symptoms and hospital admission within a cohort of Influenza A patients, by analyzing both hospital electronic health records and primary care (outpatients) data.

Hospital Universitario SaludMadrid 12 de Octubre

76

Federated data network for clinical research

Future view – "holistic data"

Bart Vannieuwenhuyse bvannieu@its.jnj.com

pharmaceutical companies of Johnson Johnson

Mr. Brecht Claerhout

Managing Director Europe TriNetX Inc.

A case study example of a successfully deployed clinical research platform that reuses EHR data to support research

Mr. Geert Thienpont

Director of the European Institute for Innovation through Health Data

Moderator

Panel discussion: the business case for hospital investment in high quality EHR data

THANK YOU FOR YOUR ATTENTION